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ABSTRACT

The various phases to developing a methodology for studying the response of a
spring-reinforced arch subjected to a point load are discussed. The arch is simply
supported at its ends with both the spring and the point load assumed to be at
midspan. The spring is present to off-set the typical snap-through behavior normally
associated with arches, and to provide a structure that responds with constant re-
sistance over a finite displacement. The various phases discussed consist of: De-
velopment of the closed-form solution for the shallow arch case; Development of a
finite-difference analysis to study (shallow) arches; and; Development of a finite-
element analysis for studying more general shallow and nonshallow arches. The two
numerical analyses rely on a continuation scheme to move the solution past limit
points, and to move onto bifurcated paths, both characteristics being common to the
arch problem. An eigenvalue method is used for a continuation scheme. The finite-
difference analysis is based on a mixed formulation (force and displacement vari-
ables) of the governing equations. The governing equations for the mixed formulation
are in first order form, making the finite-difference implementation convenient.
However, as will be discussed, the mixed formulation is not well-suited for the
eigenvalue continuation scheme. This provided the motivation for the displacement-
based finite-element analysis. Both the finite-difference and the finite-element ana-
lyses are compared with the closed-form shallow arch solution. Agreement is
excellent, except for the potential problems with the finite-difference analysis and the
continuation scheme. Agreement between the finite-element analysis and another

investigator’s numerical analysis for deep arches is also good.
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INTRODUCTION

Background

In the initial phase of this study, closed-form solutions for the response of a shallow
arch reinforced with a single spring at midspan and loaded with a downward point
load, also at midspan, were developed. Typical results were documented in ref. [11.
A schematic of this physical situation is shown in fig. 1. a figure taken from ref. [11.
The purpose of reinforcing the arch with a spring is to alter the arch’s well-known
snap-through behavior associated with the limit point. With no spring reinforcement,
under load contro! the load-midspan deflection behavior is characterized by a sudden
and large increase in deflection as the load reaches a limit value. Snap-through be-
havior is characterized in fig. 2a, the load increasing to limit point L, suddenly
‘jumping’ (dynamically) to point M, and then continuing on to point N. With a rein-
forcing spring, the snap-through behavior can be controlled. The load-midspan de-
flection relation that can result from the addition of a reinforcing spring is shown in
fig. 2b. Instead of the load increasing to the limit point, the load increases to point
C, then the relation proceeds along path CD (which is stabilized by the center sping)
to point D, and then on to point N. In a particular application, to take advantage of this
altered response it may be desirable to have a steeper or a shallower slope to path
CD. The slope of path CD can be controlled by the stiffness of the spring. Relation-
ships between the spring stiffness, the geometric and elastic properties of the arch,

and the characteristic of arch response were summarized in fig. 11 in ref. 1.

Since a generalization of the reinforcing concept would consider arches that cannot
be categorized as shallow, efforts then focused on extending the analysis to include
deep arches. Unfortunately, closed-form solutions to the deep arch problem, even
with no spring, do not exist. T'hus the extension of the spring reinforcement concept
to these other geometries relied on a numerical method. With a numerical approach,

the problems of zero stiffness at limit points, such as point L in fig. 2a. and bifurcated
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(multivalued) solution points, such as point C in fig. 2b, are serious. Most standard
numerical schemes become singular at these points. Fortunately, there are tech-
niques to overcome the singular nature of the problem at these points, though they
are not in the category of general purpose techniques. To study deep arches, then,
the following steps were necessary:

1) A numerical épproach had to be de’velrop'ed and verified; and

2) A technique to overcome the singular nature of the problem had to be imple-

mented.

During the second phase of this study, hoth steps were accomplished using a finite-
difference approach. Specifically, a finite-difference approach was used with the in-
cremental equations for this geometrically nonlinear problem. The incremental
equations were, of course, linear and to solve the problem the linear equations were
solved repeatedly as the load level was increased. To check the formulation of the
finite-difference approach, the shallow arch problem was resolved using the finite-
difference scheme. The numerical solution was compared with limited closed-form
results in ref. [2]. The comparison between the closed-form and finite-difference ap-
proaches was excellent. A continuation of the work with the finite-difference ap-
proach focused on the implementation of a technique to overcome singularities, and
on a further comparison of the numerical results with the closed-form solution, par-
ticularly the ability to move the solution through limit points, and to move the solution
onto one branch or the other at bifurcation points. The results of this phase of the

work have not been reported on and will be discussed in a subsequent section.

As will be seen, the finite-difference method, including the method to overcome
éingularities, worked quite weﬂ...on the problems tested. The finite-difference for-
mulation was based on the first-order form of the incremental equations governing
the behavior of a shallow arch. These incremental equations, by their first-order na-
ture, were of a mixed formulation, i.e., the equations involved both force and dis-

placement variables. While the first-order mixed form of the equations was very
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convenient for implementing the finite-difference approach, the mixed feature proved
to be a serious drawback. The reason is as follows: The finite-difference formulation
of the linear incremental equations was written as a known coefficient matrix times
the unknown increments in the force and displacement variables equal to a known
vector. At each load level the unknown increments were determined from the set of
linear equations using standard methods. At limit or bifurcation points, the coefficient
matrix was singular and the equations could not be solved. To know when singular
points were to be encountered, the eigenvalues of the coefficient matrix were com-
puted, one eigenvalue going to zero when the matrix hecame singular. So the sol-
ution could proceed past the singular points, the eigenvector associated with the
singular eigenvalue, but evaluated at a load sﬂghﬂy away from the singularity, was
used to represent the unknown increments at the singular points. Using the
eigenvector representation of the increments, the solutién could be made to proceed
through the singularity. Once through the singularity, the increments were again
found by using the coefficient matrix, the matrix being non-singular again. Unfortu-
nately, with a mixed formulation, the coefficient matrix is not symmetric so the
eigenvalues and vectors are in general complex, thus it was difficult to use them re-
liably to predict when singular behavior was about to occur. In addition, with compliex
eigenvectors, a physical interpretation of what was taking place in the vicinity of the
singular points was difficult. As an alternative to predicting when a singular point
was being approached, a dynamic stability analysis was posed. At each level of ap-
plied load, the frequency of small motions about the static equilibrium configuration
can be used to study stability. Bifurcation and limit points are associated with the
lowest frequency going to zero. Keeping track of the frequencies computed from the
stability analysis would thus provide insight into the location of singular points. This
dynamic stability method would also have the advantage of indicating the stability
characteristics of the various paths associated with the singular points. Unfortu-

nately, with the mixed formulation, the mass matrix for the problem was itself singu-
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lar. The mass matrix was not a mass matrix in the classic sense of a purely
displacement based formulation. As all variables were not displacements and hence
the masses associated with the nondisplacement variables were not really masses.
The eigenvalues and eigenvectors of the dynamic system were also complex and did
not provide any benefit to the analysis of limit and bifurcation point. Thus, because
of the difficulties with the mixed approach, efforts focused on the development of a

displacement-based finite-element formulation.

A displacement-based formulation would result in a symmetric tangent stiffness ma-
trix which has real eigenvalues, and hence there is less difficulty in determining the
stability of the equilibrium paths. The eigenvectors would also be real and hence
more useful. This disr;lécement formulation was more generai than the finite-
difference formulation in that it was not restricted to shallow arches. A subsequent
section of this report will trace the development of that work.

Overview of Report

To follow in this report, then, are a number of sections. The next section presents the
equations governing the behavior of a shallow arch with a reinforcing spring. The
case of no supporting spring is a special case of these equations. The third section
summarizes the finite-difference representation of incremental form of the shallow
arch equations. In the fourth section results from the finite-difference approach are
compared with closed-form results, particularly for branched solutions. This section
will demonstrate the ability to move through singular points. In the fifth section the
finite-element formulation of the problem is presented. In the sixth section, results
obtained by the finite-element method for several shallow arches are compared with
the closed-form solution. Then the finite-element results for deep arches are com-
pared with the numerical results of Huddleston [3]. Huddleston obtained results by

using the so-called shooting method for solving the first-order form of the equations

for the deep arch.
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Three appendices are also included. Appendix A is a detailed derivation of the gov-
erning equations for both deep and shallow arches. Appendix B is a users guide to
the finite-element program used to obtain numerical results. Appendix C is a listing
of the finite-element program.

EQUATIONS GOVERNING THE BEHAVIOR OF A SHALLOW ARCH

The governing equations are derived using the first variation of the total potential
energy of the arch-spring-load system shown in Fig. 1. The initial shape of the arch
is described by the function z(x), z,(x) representing an initial shape relative to a
straight line connecting the arch supports. Because the arch is shallow, there is no
distinction between the arc length coordinate along the arch, s,, and the Cartesian
coordinate x measured along the straight line between the supports. Here arch

midspan is designated as x=0. With this, the total potential energy, V, is given by

L
I
V‘QJ—L

2
{EA[U' +Z' W+ %(w’)Q] + El( —w"’ 2}dx
(1)

+ Pw(0) + —12— Kw2(0),

where u is the displacement in the x direction (horizontal), w the displacement in the
z-direction (vertical), E the Young’s modulus of the arch, A and [ the area and the area
moment of inertia at the arch cross-section, P the applied load, and K the spring
stiffness. (The development of eq. (1) is given in Appendix A.)

Equilibrium Equations and Boundary Conditlons

Taking the first variation of the total potential energy and defining the force and mo-

ment resultants to be

N= EA[u’ + ' W + % (w')Q]
M=El( —w"")

(2)



results in

2
5V=J (N[Su’ + 2',0w’ + w'dw'] 4 M( - dw’")}dx
—L

2
+ PSw(0) + Kw(0)ow(0) .

)

Integrating by parts twice yields

L

7
5V=J { —N’du — [N(Z'o + w'o)]'ﬁw - M"dwldx
—L

2
L L
7 7
+ N(SUI L + (M' + N(Z'o + W'))(Swl L | (4)

2 2

i

o

L
2

0
~maw| |2+ [P+ Kw(0)16w(0),
=L 'o
2

where ()’ denotes differentiation with respect to x. Setting 5V =0 gives the equi-

librium equations and boundary terms. The equilibrium equations are

from o6u: N'=0 : (5)
. r 7 A% 1. 7 L — 4 L
from dw: M +[N(Z',+ w')]'=0 xe(——z-,O) and x e (0 ,—2—), (6)

and the boundary terms are

L
?

NGu |2+ [M + N + W)1ow|

=t =L
2 2
— (M +NZo+ WhSW| 4 (M4 N+ W))ow %
x=0" x=0"
L
+(P+ Kw)r‘iwl — Mﬁw’l 1 MW — Méw'
x=0 =L x=0"' x=0"
2
From the boundary terms the boundary conditions are
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at X=i%, u=0, w=0, M=0. ®8)

The conditions at the location of the load and spring can be written as

at x=0 w(07)=w(0") (8)
w'(07)=w'(0") ©)
M(07) = M(0") (10)
and
V(0T) 4 P+ Kw(0)=V(0"), (11)
where the shear V is
V=M + (z, + W'N. (12)

Equations 8-10 are referred to as the continuity conditions while eq. 11 is referred to

as the jump condition. Due to eq. 5, the thrust, N, is constant, i.e.,

N = constant. (13)

Thus the boundary value problem becomes

(—EW')" + N@Z'y + w)=0  xe (”TL 07) and x € (o*,—'é—), (14)
with
L
CEA[RrL, A
N~-——L I_L[z oW + 5 (w ]dx (15)



and boundary and continuity conditions, given by eqs. 8-11. Nondimensionalizing by

defining

yields the governing equation
v vidddd 2 {24 brvidd
W' =y [z, - W']=0,

with the nondimensional version of eq. 15,

1
V2= [ (27w - (W) )dx ,
i

and the boundary conditions

w(-1)=0, W(1)=0
w'(—-1)=0, WwW'(1)=0,

and continuity and jump conditions

w(07)=w(0")
w'(07)=w'(0%)
w'(0)=w"(0")

W |0‘ +p—kw=w"|

0

(16)

(17)

(18)

(19)

(20)

The quantity 2 now represents the thrust. For a circular arch, function z, Is given by

eq. A.70 in Appendix A and in nondimensional form in eq. 16. The solution to eq. 17

for the circular arch is
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=2
A, sinyX 4+ AycosyX + AxX + A, - 21 =

5 xe{—1,0)

W= o (21
Ag sin yX + AgCos yX + AX + Ay 2212— . xe(01)
which, with the boundary and jump conditions, leads to the matrix equation,
CyAi=Ac;+pd;;i,j=12..8 (22)
for the eight unknown A;’s. Equation 18 results in
mi A A+ n A+ g=0. (23)

This leads to a quadratic equation in the nondimensional load p such that for given
values of y, 1, and k, the nondimensional load p can be determined.

The Adjoint Problem

The solution for W, eq. 21, is unique if y is not an eigenvalue of the adjoint problem
to the differential equation, eq. 17, boundary conditions, eq. 19, and the transition
conditions, eq. 20. If y is an eigenvalue to the adjoint problem, then muitiple solutions
for W are possible for particular values of the load p, and matrix C; in eq. 22 is sin-
gular. (The fact that multiple solutions to eq. 17 and its éssociated boundary and
transition conditions are possible is sometimes referred to as Fredholm’s alternative

theorem.) The adjoint problem is

V' yv=0, (24)

with homogeneous boundary conditions

v(—=1)=0,v"(—1)=0

v(1)=0,v"’(1)=0, (25)

and the homogeneous continuity and jump conditions

11



v(07)= V(0+)
vi{(0T)= v’(0+) )
26
V”(O_) — V”(O+) ( )
v”’(0+) — v'"(07) + kv(0)=0,
with the compatibility condition
1
pv(0) = 2524 J v(X)dX . (27)
-1

The adjoint boundary value problem is homogeneous, and has the trivial solution
v(X)=0 for all X. Note that the compatibility conoition, eq. 27,7is satisfied by the trivial
solution for any p. Nontrivial solutions (eigenfunctions) for v(X) exist if y is an
eigenvalue. If y is an eigenvalue, then p, y, and 1 are related by the compatibility
equation. For a given arch rise 1 and eigenvalue y, the load(s) p at which multiple
sol'utionsr for W(X) are possible are determined by eq. 27. Thio adjoint problem has

the same homogeneous solution as eq. 17, namely

(28)

B, sinyx + B, cosyx + Bayx + B, Xe(—-1,0)
V=) BysinyX + BgcosyX + B,Xx + B, X e (0,1)

Substituting eq. 28 into eqs. 25 and 26 results in a homogeneous problem for coeffi-

cients B, to B, with y as the eigenvalue parameter. The nontrivial solutions to this

problem are

A. siny=0 (y=n=n,n = positive integer)
A1 k+#2°, then (29)
vo(X)=B, sin nax, Xe(-1,1)

for which any value of p will satisty compatibility; and
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A2 k=2y2, then

B. sin nnX + By( — i sin nax + X + 1), Xe(—10) )

Vo) = 1
B. sin naX + By qesin naX — X + 1), Xe(01)
for which
2
n
p=41 <1 _ cos(nn) + < g) ) (31)
where
k B, + B
y:ynznn=£_ , and B'r_l____s_ (32)
2 2
B. siny#0
B.1 k=#0, then (33)
ksiny + y(2y2 — k) cos y=0 with
-k - -
sin yX — -k—ycosyx —yXx —y, Xxe(-10)
V(—X_)=B1 5 2 k 3 (34)
— sinyX — yk yCoS )X + )X — v, Xe(0,1)
for which
21k {1 2" — k y
pP=— (-Y—(COSy—U———k——smy——é-), (35)
B.2 k=0, then .
cos y=0 with (36)
v(Xx)=B,cosyX, Xe(-11)
for which

p=4iysiny. (37)
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The solution for W when y is an eigenvalue of the adjoint problem describes special
but important system behavior. When y is an eigenvalue the solution for W is still
obtained from eqgs. 22 and 23, however, C; is singulér. In case A.1, C; is reduced to
rank 7. The unknowns A., A, Ay As A, As, and A can be solved for in eq. 22 in terms
of As. The unknown A; is solved for in terms of p and 1 in eq. 23. Solutions for As
exist only for values of 1 greater than a threshold value and only for a range of p. For
each p in this range there are two values of A, thus two solutions for W. These sol-
utions correspond to two asymmetric equilibriu‘m pathq bifurcating from the syh-
metric equilibrium path. Case A.2 is a special case of A.1. In this case C; is of rank
6 and A, A, A, As, A;, and A, are solved for in terms of A, and As. The value of p for
which solutions exist was determined from compatibility as given by eq. 31. Equation
23 is used to solve for As in terms of A,. Again solutions only exist for 1 large enough.
This case corresponds to bifurcation behavior in which the two bifurcation paths col-
lapse to one solution in which the midspan deflection increases withou>t a change in
load. In cases B.1 and B.2, the matrix C; is again of rank 6 and in addition, A;= As.
The remaining A’s are solved for in terms of A;, and A, is solved for in terms of 1 via
eq. 23. For given values of y and k, related through eq. 33, there will be only one
value of 1 which yields a solution for A,. This case describes the particular situation

of a horizontal inflection point on the symmetric equilibrium path.

The equations presented in this section lead to the exact solution for the case of a
shallow arch. As has been seen in past results [1,2]. the response is complicated
with a number of special but important cases. The governing equations will now be

solved using a finite-difference formulation.

FINITE-DIFFERENCE REPRESENTATION OF THE
INCREMENTAL FORM OF THE SHALLOW ARCH EQUATIONS

First-Order Form of Governing Equations

Using the governing equilibrium equations from the exact solution and the definitions
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of shear force, and axial force and moment resultants, the following system of

equations can be written:

N'=0
V=0
M+ N@Z'y + W) — V=0

N=EA(u' + Z’ W + %(w')g)
M=EI(—w"

Introducing the additional definition

(38)

(39)

which is the rotation, produces a system of first order equations consisting of force

and displacement variables. These equations are

N =0
V=0
M= ~NZo— f) + V

u'=NJEA + Z/,fi — %ﬂQ

w=—-fi
[i’=M/E|7
Letting
y;=N ys=Uu
y,=V Y5 =W,
y3=M Ye=

the system of equations can be written as

y' =Ay + f(y)

with boundary conditions

(40)

(41)

(42)

15



v4(0)=y,(L)=0
ys(0)=ys(L)=0 (43)
y3(0) =y,(L)=0

and continuity and jump conditions

yi=vyi

y; + P + K¥s=y;

—_ ot

o
Ys =Va

Yo = Ve .

where the '+’ and ’-’ denote values of the variables to the left and right of the center

of the arch.

Considering each of the six equations in eq. 40 to be a function F;, j = 1,6, of six

variables, the governing system of first order equations can be written as

FiN, V, M, u, w, f)=0, j=1,6. (45)

Finite-Difference Representation

Utilizing a finite-difference approximation for the 1st derivative, the governing

equations become

16
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k
Fei=

Uyr — Ui

Xigr — X =0

K K

Vl+1 -V =0

Xigsg — %

M:(+1 - M:( 1 K v
=X, =% T 7{Ni+1(zoi+1 ~ 1)

k k

Xigr — %

N; ;o 1 /K2
+ 'E/';\_ + Zo1ﬂ| - ?(ﬂl) =0
K K
Wipt1 — W 1 ok K
VIR + —2-{ﬁ;+1 + p}=0
ﬁ:(+1 - 'Br 1 K K
=%~ e Mier F Mi}=0

— VK

i+1

7 (f

K
i+1

)2

(46)

where i identifies values at the i-th grid point in the finite-difference grid and k signi-

fies that the equations are being solved for the k-th load level. The boundary condi-

tions are

Mi=0 Mf =0
u‘;=0 ufn=0
w';=0 wfn=0,

(47)

where the number of grid points is m, the 1-st grid point being the left boundary

(x=0) and the m-th grid point the right boundary (x=L). The continuity and jump

conditions at the middle grid point are

17



Incremental Form

Letting

k ko
NL\r\_+1 - N%_——O
k k
Vv — Vi — Kwm =P
T >
k k _
M%H — M_r_él—O
uk u% 0 (48)
m - m =
2 2
k k
Wmn — wm =0
2 2
k k
m,, — fim=0
ﬁT“ ﬂ?
NEFT=N 4 ANY
ViR =vE 4 AVf
M =M + AMY o)
u:(+1=u:< + Aur
w:(’L1=w,k + Awf(
41 { 4 k
FI=B AR

substituting into eq. 46, expanding, and neglecting higher-order terms, results in the

following set of equations for the increments in the six variables:
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k K k K
Fk~+1= N6+1 — N, + ANi+1 — AN, -
K Xig1 = X Xigq — X
k k K K
1 Ve — Y Ay 4 — AV
2 Xig1 — % Xig1 — %
M, — MY 1
k+1_ i+1 i , k k % ’ K kg K k
Fam = Xie1 — X + ?(Zoi+1Ni+1—ﬂi+1Nu+1'V|+1+Zost - BN *Vi)
AM:(H _AMik 1 K v k k k K
Xiv1 — X + "2'(Zoi+1ANs+1 = By aONL = AT N — AV

+ 28NS — BANS — AFINS — AV)=0

k k
u. — U
kK+1_ “i+1 i 1 1 k , K 1 Koo\2
Fai = Xi+1 — X ?{ EA Nigr + ZoipaBiyy — _2‘(ﬁ:+1) (50)
1 . pk 1 (pky2
AU:(H - A“:( 1 1 k K K K
X1 % 2 ﬁANiH + 20 AR = B BB
1 )
+ o AN+ 2B — paptf =0
K K K K
w - w Aw; — Aw
k+1_ Yi+1 i 1 7ok K i+1 i 1 k Ky _
Fsi T TX % + ?(ﬂi+1+ﬂi)+ X 11 — % + —Q_(Aﬂi+1+Aﬂi)_0
ﬂ:(+1 - ﬂik 1 k K Aﬁ:<+1 - Aﬁ? 1 K 3
Fo= X7 —x ~ ZEI My + M) + Xig1 — % 2El (AM{, 4 — AM{) =0,
with boundary conditions
M§ + AM{=0
uf + Auf=0
wh + Awi=0
‘ v 51
MY, + AM,=0
K k
uy, + Au,=0

w:(n + Aw'fn=0

and continuity and jump conditions

19



k

K K K \
Nm — Nm + ANm + ANm =0
Ty 5+ )
Vi, — Vin — Kwh + AVl — AV — KAWm =P
2 2 2 2 2 2
M, , — M + AMf , , — AMn =0
2 2 2 2
u% utm + Auk Aukn =0 (52)
m - m m m —
37 *! 2 2 t1 2
K k K K
Wm — wm + Awm Awm =0
7+ 2 Fa l
K K K K
[f_+1—ﬂm +Aﬁm+1 Affm =0
Specifically, we have equations which can be written as
[A{Ay}={R} (53)

If the coefficient matrix [A], is not singular, the equations can be solved for the in-
crements in the force and displacement variables. A solution is realized when the
residual vector {R} is zero. This condition is achieved by iteration at a given load

level.

At limit and bifurcation points the coefficient matrix [A] becomes singular, and the
eigenvalues of [A] are used to evaluate the singular nature. As can be seen from eq.
52, the [A] matrix is not a classic stiffness matrix (i.e., it is not symmetric) since it
involves both forces and displacements. lts eigenvalues are not all real and vary
greatly in magnitude which makes it difficult to analyze the singular nature of the

matrix and use the eigenvalues as an indication of singular behavior. Equation 53 can

be partitioned as

Ay Ay AF Ry
= (54)
At Ay Au

20
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where AF are the force variables AN, AV,'AM, and Au are the displacement variables
Aw, Au, Afi. It was hoped that by eliminating the force variables from eq. 54 a classic

stiffness matrix would resuit. Doing so led to an equation of the form

[A'J{Au}={R) (55)
where
[AT=[Ay — Ay A7 Al (56)
and
(R)={Ry — Ay A} Ry (57)

Unfortunately the [A“] matrix was not symmetric either and could not be used to help
analyze or indicate the singular nature of the problem at bifurcation points and limit
points.

Dynamic Stability Analysis

As a final approach, it was hoped a dynamic stability analysis would aid in determin-
ing the bifurcation and limit points. For the dynamic problem, the governing

equations are

N,=
V,x =MWy

M,=-N@z, — ) +V
u,=NJEA + Z/,ff — %/?2 (58)

W,x = - ﬂ
B=MJEl,

where variables N, V, M, u, w, fi, - i.e., yi, i = 1,6, - are now functions of space

and time. It is assumed that
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yx)=ye(x) + Ay(x.t), (59)

the two parts on the right hand side representing an equilibrium part and a dynamic

part to the solution. Further assuming that

Ay(x.t)= Azs(x)e”

and using the finite-difference formulation on eq. 58, the system of equations for the

Ay, results. This system is of the form

[A{Ays} — 2’[BI{Ay,}=0 (60)

from which the eigenvalues 1 can be determined. It was found that the eigenvalues
of the dynamic stiffness matrix were also complex. Thus the dynamic stiffness anal-
ysis did not offer any advantage over the examination of the eigenvalues of the ori-

ginal A matrix in eq. 53.
COMPARISON OF CLOSED-FORM AND FINITE-DIFFERENCE SOLUTIONS FOR THE
SHALLOW ARCH

Several important cases of shallow arch response were studied with the finite-
difference formulation, and the results were compared with the closed-form solution.
The load-midspan deflection relation of a spring-reinforced arch with A=1.5and k=2
is shown in fig. 3. These values of the parameters result in limit point behavior. Both
the closed-form solution, the dashed line, and the finite-difference solution evaluated
at distinct load levels, the asterisks, are shown. VThe numerical values were gener-
ated by increasing the load from zero and proceeding to the load level represented
by the asterisk just to the lower left of the limit point. At this point the eigenvalue
strategy was used to move to a point represented by the asterisk just to the lower
right of the limit pbint. The load level was then decreased and the solution continued.

Moving the numerical solution past the second limit point, point L’, was accomplished
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in a similar manner. Without the eigenvalue strategy, it would not be possible to
move the numerical solution past either limit point. The numerical solution could be
made to have as many discrete points as desired, the number shown in fig. 3 being
selected simply for purposes of illustration. The load-thrust relation for this same

case is shown in fig. 4.

_ Figure 5 illustrates the response of an arch with the parameters chosen so it exhibits

bifurcation behavior as the load increases from zero. For this case,
J=25and k=10. At point C, the load-deflection relation can either continue with the
- load increasing to the limit point, or the relation can branch to a secondary path, the
load decreasing with increasing deflections. Whereas the solution path from zero
load to the limit point represents arch response that is symmetric with respect to the
midspan, the bifurcated solution path represents arch response that is not symmetric
with respect to midspan. To be forewarned that the solution was about to bifurcate,
— "the eigenvalues of the coefficient matrix were computed as the load increased from
zero. For this problem there were real as well as complex eigenvalues. Fortunately,
—= one of the real eigenvalues tending to zero provided an indication that a bifurcation
point was being approached. There is no guarantee with the mixed formulation that
any of the eigenvalues have to be real and provide an indication of the impending

bifurcation. This, as mentioned at the onset, represents an important disadvantage

to the mixed approach.

The move onto the secondary path was accomplished with the eigenvector associ-
ated with the real eigenvalue that did approach zero. If the eigenvector was not used,
the solution would continue on the primary path and the eigenvector continuation
— approach could be used to move past the limit point, as in fig. 3. If the solution was
on the secondary path, the move back onto the primary path at D was no particular
problem. The load-thrust relation for this case is illustrated in fig. 6. The interesting

feature to note is that if the response is on the secondary path, CD, the thrust remains
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constant even though the applied load decreases as the arch deforms. On the pri-
mary path both the thrust and the load change values as the arch deforms. It is also
important to note for the case shown in figs. 5 and 6 that to move onto the secondary
path, the load must decrease. If the load increases, the response remains on the
primary path until the limit point. At this point, under load control the deflections then
jumps to the remaining portion of the primary path, as in fig. 2a. If under displace-
ment control at the limit point, the load must decrease for the displacements to in-

crease. As can be seen, the finite-difference with the continuation method and the

closed-form solution agree perfectly.

To ha\;e the ability to increase the load, yet not experience the snap-through at the
limit point, the behavior shown in fig. 7 is desirable. This figure illustrates the cor-
relation between finite-difference solution and the closed-form solution, but it also il-
lustrates a useful response. If the spring stiffness is increased so k=25, the arch
midspan deflection behaves as shown in the figure. As the load is increased from
zero, a bifurcation is encountered at C. The response can move to the bifurcated path
and the load can continue to increase, with moderate increases in deflection. Thus,
with the proper choice of spring stiffness, neither the decrease in load required in fig.
5 and 6, nor the sudden jump in displacement due to limit point behavior have to be
tolerated. This is a significant finding, one that has important physical implications.
As noted in fig. 8, on the bifurcated path the thrust is not influenced by the load level.

This also has important ramifications.

Despite the success of the finite-difference approach coupled with the continuation
rmethod, as indicated by the excellent agréerhent of the tast several figures, the
method was not based on principles that would guarantee success with all problems
encountered. Hence the entire problem was reformulated with a displacement-based
finite-element approach. With a displacement-based approach, the coefficient matrix

that results would be symmetric and thus its eigenvalues real. In addition, positive
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definiteness of the matrix, or the lack thereof, can be used to study stability of the
response as the solution bifurcated. As an alternative, the classic dynamic stability
approach could be used. The following section outlines the finite-element formu-
lation.

FINITE-ELEMENT FORMULATION FOR A GENERAL ARCH

Basic Definitions

The finite-element approach was formulated using the Principle of Virtual Work. The
Principle of Virtual Work requires that the internal work of a system equal the external

work, i.e.,

O Wit =0 Wey (61)

The internal and external virtual work expressions for a general arch with a center-
span load and linear spring are developed in detail in Appendix A. The basic as-
sumptions used to develop the virtual work expressions are that the strain of the
reference arc is small compared to unity, the Kirchhoff-Love hypotheses govern the
strain of parallel arcs, the rotation and rotation gradients as given by inextensional
theory are sufficiently accurate for a small strain (extensional) theory, the material is
linear elastic and that the normal stress components in Hooke’s law can be neglected
with respect to the hoop normal stress, and that the reference arc passes through the
centroid of each cross section. The virtual work expressions are (see also the sum-

mary of the deep arch in Appendix A).

S
0 Wint=J 6§,Tg dso-
0
and (62)

£ —
6 Weyy=Pow,, + K(Z — {0)[.(_°7w_'“)_5wm ——-l—]{-ﬂéum]

where
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£=Jly—wpl? + (63)

The quantity ¢, is the original length of the initially vertical spring and 7 is the length

after deformation. In the expression for internal work, the generalized strain vector

}:0
£={ } (64)
ﬂf

in which the prime means derivative with respect to arc length coordinate s,, and the

N
z={ }=§£, (65)
M

is

stress vector is

where the elasticitry matrix is:

EA —Elk,
C= ) R (66)
—Elk,  EI

In the elasticity matrix the following definitions are used:

— 1 - ¢
A—Jj\té—xod/\ and |-\[deA (67)
A A

where the k, is the curvature of the initial configuration and { is the thickness coor-
dinate measured from the centroid. Expanding, the strains can be written in terms

of the displacement gradients as
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11+ Ir2 and o —N— . (68)

Eo=r'|' + 5

The displacement gradients are defined by

It=u — k,w and TI'y=w + x.u. (69)

(Note that the "0” subscripts on the tangential and normal displacements of the ref-
erence arc used in Appendix A have been dropped here for convenience.) The vari-

ation in the strains are

Seg=(1 + T)6T; + Tyl

op = + oy -
12 r2 (1- rij)ajz N

Incremental Form

Using an incremental formulation to solve for the unknown displacements, the sub-

stitution
u—u + Au  and w-ow + Aw @n
is made, and all dependent variables are linearized in the increments. Thus

r,=T; + ATy and Ty=Ty + ATy, (72)
where
AT;=Au’ — k, Aw  and Aly=Aw' + k,Au. (73)
The incremental strains are

£,=6, + Aty and  f=f + Af, (74)
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where

ACO=(1 + rT)ArT -+ rN ArN

S enp
N

AR =

Incrementing the actual displacements in the strain variations results in

or'y Mol IM'vATly
o = + 32 + A o'y
- _ oy
J1-T4 (1-m) (1-TW) (76)
WAy (1 +2r3)
M T T ]

Introduction of Finite-Elements

At this point the displacement interpolations for a seven degree-of-freedom element
with three degrees of freedom in the tangential displacement - one at each end of the
element and one at the center - and four degrees of freedom associated with the
normal displacement w and w’ are introduced. The result is that

u=H,0, Au=H,AL, Su=H,5]

77
w=H,, Aw=H,Al, dw=H,50.

In the above the seven nodal displacements are
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and the shape functions are

Hy=[H44(s,), 0, 0, Hyu(s,), O, 0 Hy7(s0)1 s

and
H, =10, Hyy(So). Haa(So): 0, Hos(So). Hag(So), 0]
with
2
2(so —So1) 1 2(s, _801)
— —_— 1
hel hel
HH(SO): 2 - 2
2
2(30 _501) -1 2(50 _501) 1
hel ) hel
H14(SO)= D + 2
2
2(s, —S
Hyz(so)=1 — ( (oh ‘ o) *1> . So1 £ Sg X Sp
e
and

(78)

(79)

(80)
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2
S,— S S,— S
H”(SO)=1 __ 3< o) o1 ) + 2( [¢] 01 )
hel he!

2
5,— S

H23(So)= - (so— 501)(1 - h o )
el

2 3
S, — S S,— S
H25(50)=3< So o ) _ 2( Sorfar )
S S ? S S
- 1 - 1
H26(So)= - (So - So1)<( < hei 2 ) - ( = hel > )) . Sp1 £ So < Sy

where s, is the arc-length location of the left end of the element, s, is the arc length

(81)

location of the right end, and h, is the arc length of the element. See Fig. 9 for a
sketch of the element. Substituting the shape functions into the strain and strain

variations leads to

beo=B4(WA0, (82)

where By(0) is a 1 x 7 matrix given by

By =By(i)=Hy — koH, + GT(H'y — KoHo) (H'y — KGHp)

i (83)
+ HT(ﬂ'z + Koﬂ1)T(ﬂ'2 + KoHq) .

and

3 =B,(W)al (84)
where B,(0i) is a 1 x 7 matrix given by

= By(l) = ————(H" + KoH',)
J1-T2
) (85)

I'n'n

in the above

30

i m

L

Ui n o Wl m

UL i

L Al
I L Iikl

W

Wi



0

I

L)

R TR T SRR SSUN SN

{l

TR=0"H" + H) (H + wkoH (86)
MWy =u'(H' + xoH) (H, + xoH') - (87)

Also the incremental strain and incremental displacement relations are
Ae,=B,Al and AR =B,Al. (88)

Incrementing the actual displacements in the strain variations, these incremental

strain variations can be written as

56, =B,(0)30 + Au'DSY  and  3f =B,(1)50 + AuE[)SU, (89)
where
D=(H'y — xoHa) (H's — koHy) + (H'5 + roHy) (H'y + iqHy) (90)
and
. r
E(U)= N T(H, + roH) (Hs + ioH') + (H7; + oH') (Hy + KoHy)]

(1-TR)*?
(14 2r%)
(1-T2)"

(91)
[(H, + KeH) (H'y + KoHY)].

Note that the 7 x 7 matricies D and E are symmetric. Using the expressions for the
incremental strain variation, the strain variation, and Hooke’s law, the internal virtual

work for an element can be written

Wi =30'R + 80'TK + KsIAL . (92)

In this expression
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T T EK ‘_ETKO §1 n
R:J. [51 52] - _ uds,

ng B'CBds,, (94)
h

and

Ke =J (—B1Q_D_ + C_B.QQE) ds, - (95)
heI

Here K + K. is referred to as the tangential stiffness matrix. It is evaluated numer-

ically, specifically, by using Simpson’s integration rule. An issue is the number of

intervals to be used to evaluate the integral. This is addressed in the next section.

The actual displacements in the external work are also incremented to give
OWex = Powp,

+{Qy — KunAWy = KyiAup)dwy, (96)
+ {QT - KTNAWm - KTTAUm}(SUm o

in which the incremental quantities from the spring are

Qn=Fs(fo — W)/t
QT= _Fs(um/{)
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The incremental expression for the internal virtual work can then be set equal to the
incremental expression for the external virtual work to solve for the displacements in

an incremental fashion.

This completes the outline of the finite-element formulation. it is totally
displacement-based and hence the eigenvalues of the stiffness matrix are expected
to be useful for the analysis of instability.
COMPARISON OF CLOSED-FORM AND FINITE-ELEMENT APPROACHES FOR THE
SHALLOW ARCH

Initial Behavior

Before implementing the eigenvalue continuation scheme within the finite element
method the inital response of several shallow arches, beginning from zero load and
displacement, was compared using the finite element method and the closed-form
solution. In fig. 10 the comparison for one of the shallow arches is illustrated. Four
elements are used and four intervals in the application of the Simpson’s rule are used
to approximate the integrals in the tangent stiffness matrix, eqs. 94 and 95. This case
has no spring, k=0, and a value of the arch rise parameter 1 =0.7656 which produces
load-midspan deflection behavior that is monotonically increasing everywhere along
the path. There is no bifurcation or limit point for this case. Clearly, the finite-
element analysis and the closed-form solution are in complete agreement. In fig. 11
comparison is made for the value of 1= 1.5, k again being zero (no spring). This value
of ] results in limit point behavior. As can be seen, at the limit point the finite-
element analysis responds to an increasing load level by jumping to the other portion
of the solution path. In fig. 12 a case of bifurcating behavior is shown, the value of 1
being 4, k still being zero. In the finite-element analysis, as the load is increased
from zero and the bifurcation encountered, the solution responds by remaining on the

primary load path. For this case the load was not increased beyond the limit load.
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The finite-element formulation and closed-form results agree very well for the initial
response (response before limit point) of the shallow arch. The influence of more
elements or more integration intervals was not explored because of the good agree-
ment with what was felt to be a rather crude model.

Behavior with Singular Points

To be able to continue solutions through limit 'poirn'rs and to branch on to bifurcated
paths, an eigenvalue continuation method, similar to that used with the finite-
difference scheme described earlier, was implemented in the finite-element analysis.
As a bifurcation point or limit point is approached, one of the eigenvalues of the tan-
gent stiffness matrix will approach and pass through zero. In the displacement based
finite-element formulation the eigenvalues of the tangent stiffness matrix are all real
and thus the existence of a zero eigenvalue clearly indicated the singular nature of
the tangent stiffness matrix at bifurcation and limit points. At a bifurcation point the
elgenvector assoclated With the zero eigenvalue is asymmetric. [f the solution at a
load just prior to the bifurcation point is modified by adding to it this eigenvector
(normalized) and multiplied by a scale factor, a solution on the bifurcated path can
be found. Once on the bifurcated path, the usual solution technique can be used to
continue along the path. At a limit point the eigenvector associated with the zero
elgenvalue is symmetric. If the scaled eigenvector is added to the solution at a point
jusf before the limit point, a point on the prath just after the limit point can be deter-
mined. As with the bifurcated path, once a solution past the limit point is found, the

arch response can be followed using the standard solution technique.

Figures 13, 14, and 15 show the agreement between the finite-element solution and
the closed-form solution when the eigenvalue continuation scheme is used in the vi-
cinity of bifurcation and limit points. Figure 13 illustrates the case with nondimen-
sional spring stiffness k =2 and 1 = 1.5. With these parameters the arch will exhibit

limit point behavior with no bifurcations. The load-midspan deflection relation, be-
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ginning at zero load, is determined by using the solution at the previous load as the
initial guess to the solution at the next load step. This process is repeated until the
limit point is encountered. Using the solution at the point just to the lower left of the
limit point, the eigenvalue continuation scheme is used to determine the solution at
the point just to the right of the limit point. From this point the load level is decreased
stepwise and the remainder of the relationship is generated, each load step using the
solution at the previous load step as an initial guess. The notation ‘batch” and
‘interactive’ in fig. 13 refers to the fact that two computer codes were written for the
finite-element formulation with the continuation. The batch program automates
somewhat the steps necessary to continue the solution past a limit point. The inter-
active program requires user intervention and allows the user to vary the parameters
associated with the continuation scheme based on the nature of the solution, the

eigenvalues, and the eigenvectors.

Figure 14 illustrates the agreement between the finite-element and closed-form sol-
utions for an arch with 2 = 2.5 and k = 10, an arch which exhibits both limit point and
bifurcation behavior. At the bifurcation point the solution can continue along the
symmetric path using the standard solution technique, or the solution on the
bifurcated path can be determined using the eigenvalue continuation scheme. Note
that the eigenvector associated with the eigenvalue that approaches zero at the
bifurcation point is asymmetric. At the limit point the eigenvalue continuation
scheme can be used to move past the limit point. Again, once a point on the
bifurcated path is found, or a solution past the limit point is found, the standard sol-

ution technique can be used to follow the arch response.

Figure 15 shows the agreement between the finite-ele:..~nt and closed-form solutions
for a shallow arch that exhibits bifurcation behavior but no limit point. The parame-

ters for this arch are 1 =25 and k=70. For this arch the eigenvalue continuation
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scheme is necessary only to get onto the bifurcated path, the symmetric path can be

followed using the standard solution technique.

In summary, for the shallov»{ arch, the finite-element formulation and the closed-form
results agree very well, both on primary paths and on adjacent equilibrium paths,
which are reached with the finite-element method by using the eigenvalue continua-
tion scheme. All the arches which used the eigenvalue continuation method were
modeled with 16 elements and 8 integration intervals. The influence of the number
of elements or the number of integration intervals was not investigated due to the

good agreement with the closed form solution.

COMPARISONS FOR NONSHALLOW ARCH USING FINITE-ELEMENT APPROACH

Huddleston [3] published a series of papers dealing with the response of deep
arches. Huddleston obtained numerical results from his first-order formulation by
using the so-called shooting method. With this method, a boundary value problem is
converfed to an initial value problem. Using conditions at one boundary, a
predictor-corrector method is used to integrate the governing differential equations
and compute the conditions at the other boundary. If the conditions at the second
boundary do not match what the boundary conditions there should actually be, the
initial boundary conditions are adjusted, and the process repeated. The process is
repeated until the boundary conditions on both ends of the arch match the desired

conditions. To compare with Huddleston, nomenclature peculiar to that formulation

must be introduced. Specifically,

2
. y
1 ” ey A (98)

which is a modified second moment of the cross-sectional area, where

ko= initial curvature of arch. (99)
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Quantity I’ in eq. (98) is identical to the quantity 1in eq. (67). Also

A = midspan displacement

DELV= LY = nondimensional displacement

L
pL®
Q= = = nondimensional load (100)
CRUX = =compressibility parameter
AL,

REL =H/L = height ratio .

Since Huddleston reported the numerical values of the nondimensional parameters,
there are wide choices of values forrthe physical dimensions of the arch that can be
used and still duplicate the values of those nondimensional .parameters. A compar-
ison with Huddleston for the case of CRUX=0 and REL=0.25 is shown in fig. 16.
(Note, to have CRUX=0 the arch has to be infinitely thin, so that the radius of gy-
ration, /A , is zero. Alternatively, the arch has to be infinitely long. These are both
extremes and cannot be duplicated exactly by the finite-element formulation.) In fig.
16 two finite-element descretizations, 16 elements and 32 elements, two levels of
Simpson’s rule integration accuracy, four intervals and eight intervals, and two ab-
solute arch thickness are included in the figure. The value of L was chosen to be 16
in. The material considered was aluminum, with Young’s modulus of 10 Msi and
Poisson’s ratio of 0.3. The results from Huddleston were obtained by interpolating
from the figures in ref. 3. Initially, to compare with Huddleston, 16 elements and four
integration intervals were used, and the arch thickness, h, was chosen to be 0.1 in.
This led to a value for CRUX of 0.32 x 10 5. The calculations with these parameters
are represented by the open squares. The finite-element calculations were stiff rel-
ative to Huddleson’s results, the asterisks. To overcome this, the finite-element re-
sults were computed for the case of a thinner arch, h=0.01in,, the open triangles.
The value for CRUX in this case is 0.32 x 10 7. Though this is a more flexible arch,
and should lead to less stiff response, the response was actually much stiffer than for

the thicker arch. This was surprising. However, this result can be attributed to the
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following: For both the thick and the thin arch a certain percentage of the strain en-
ergy is due to bending strains, and the remaining percentage is due to extensional,
or membrane, strains. For the thinner arch there is very little strain energy due to
bending. Unfortunately, the element displacement field is represented only by a
quadratic polynomial for the extensional motion, u(x), but it uses a cubic polynomial
for the out-of-plane, or bending, motion w(x). Though the element does not “lock’ in
the classic sense of finite-elements, it tends toward locking behavior in the exten-
sional mode and is thus overstiff for elements which have a higher percentage of
strain energy In extensional effects than in bending effects. The thinner element thus

shows this tendency to be overstiff.

To further study this locking tendency, and to minimize it, the number of elements
Wés doubled”and the results usinéiitwo' thickness again céimpared. With more erle—
ments, the stiffness of the finite-elemeﬁt model more closely matches the resuits of
Huddleston. In fact, with the thicker arch, the solid squares, the results compare well.
As the case of the thinner arch, the solid triangles, is stiffer, the membrane stiffening

effect is again evident.

To study the effect of the number of integration intervals, and to determine if tﬁis had
any influence on the stiffness of the model, the thicker arch and 16 elements were
again used but with éight-instead of four trapezoidal integration intervals. These re-
sults are shown as solid circles and it is evident the number of integration intervals

has little influence, as the solid circles and the open squares are practically coinci-

‘dent.

After determining the number of elements, the number of integration intervals, and
the physical parameters of the arch necessary to favorably compare the finite-
element results with those of Huddleston for the intital arch response, the eigenvalue

continuation method was tested. Using the arch with h=0.1 and L = 16 which results
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in CRUX=0.32x10% and REL=0.25, and 32 elements, the eigenvalue continuation
scheme was used to branch onto the bifurcated path and to move past the limit point.
The comparison of the finite-element results and Huddleston’s results are shown in
fig. 17. Again the values for Huddelston were obtained by interpolating form the fig-
ures in ref. 3. As illustrated in fig. 17 the finite-element results compare quite well
with Huddleston’s results. However, with the deep arch the bifurcated path and the
symmetric path on the other side of the limit point were more difficult to follow than
they had been in the shallow arch. Smaller load steps were necessary to be able to
continue on the curve after an initial equilibrium solntion on the adjacent path had

been found using the eigenvalue continuation scheme.

FINAL COMMENTS

Presented has been a summary of a rather extensive study of a complex yet funda-
mental problem. The problem is complicated by the existence of multiple equilibrium
solutions. A finite-element formulation with a scheme to aid in finding the multiple
solutions has been developed and discussed. Comparisons with other solutions are
good and lend credibility to the formulation. A users guide for the program written
to implement the finite-element formulation is provided in Appendix B. At this point
a variety of arches should be studied to better understand the character of the for-
mulation, and to interpret how the formulation actually represents and interprets
particular physical characteristics of arch response.

REFERENCES

1. Hyer, M.W., Johnson, E.R., and Knott, TW., “A Study of the Response of Nonlinear

Springs,” Report VPI-E-89-15, August 1989.

2. Hyer, M\W,, Johnson, E.R., and Knott, TW., "A Study of the Response of Nonlinear
Springs,” Report VPI-E-90-01, January 1990.

39



3. Huddleston, J.V., “Finite Deflections and Snap-Through of High Circular Arches,”

J. Applied Mechanics, vol. 35, no. 4, pp. 763- 769, Dec. 1968.

40

|1 — j

[ (N (I i WG mi mg

N

&L



i

Fig. 1

- Geometry, loading, and nomenclature for shallow arch.
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Fig. 9

Seven degree-of-freedom arch element.
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element analysis, 1=0.7656, k=0.

50

i il W L mi (] ] u wi | i



40

1.
¥
I ¥
¥+
>
i ¥*
30 -'X'-
2 ¥
S | i
2 ;
Z
S 20 ;
@ 20 |- 3
E 3
—DI— I *
z [ e
& | 0 _gee----C
< /o7
10 |-
0 ] l : | L | ]
0 1 2 3 4
NON-DIMENSIONAL MIDSPAN DEFLECTION
ANALYTICAL FINITE ELEMENT
(4 ELEMENTS)
N S VA
Fig. 11 - Comparison of load-deflection behavior for exact solution and finite-

element analysis, 1=1.5, k=0.

51



100

NON-DIMENSIONAL LOAD
n
o

-100 °°¢° e
-150
-200 1 I 1 | L I 1 ] L
0 2 4 6 8 10
NON-DIMENSIONAL MIDSPAN DEFLECTION
FINITE ELEMENT FINITE ELEMENT
ANALYTICAL (4 ELEMENTS) (8 ELEMENTS)
: -o-- —e—

Fig. 12 - Comparison of load-deflection behavior for exact solutlon and finite-
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Appendix A

Derivation of the Governing Equations -

The governing equations for the static equilibrium configurations are developed first
for deep arches, and then specialized for shallow arches. We consider the large

displacement response of elastic arches in the plane of their curvature.

DEEP ARCH

Kinematics

The initial, unstressed configuration of the arch is characterized by a éymmetric plane
curve, or reference arc, whose arc length coordinate is denoted s., and whose cur-
vature in the planer,rxo, is of one sign. Coordinate s,=0 at the left end and s,=3S at
the right end. The origin 0 of a right-handed cartesian system (x,y,z) is at the left end,
with the x-axis passing through the end points, the y-axis perpendicular to the plane
of arch, and the z-axis in the plane of the arch. See Fig. A.1. The unit vectors 1 l and
l:( denote the positive cartesian directions x, y, and z, respectively. A point on the
réference arc has a positi{)n vector ry(s,) measured relative to the origin 0. Let '_l_' and
TSI denote unit tangent and normal vectors, respectively, of the reference arc at s..

The differential geometry of the reference arc is represented by

dLo A di I d& A A
dSO_I’ dSo_KON' dSo_ —KOI (1)

in which the unit normal N is directed to the concave side of the reference arc.

The material point with position [.(s.) in the initial configuration occupies the point
defined by position vector T, in the deformed configuration. See Fig. A.2. We intro-
duce the displacement vector A, such that
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whose components are

Ao = Uy(So) i(so) + wy(s,) &(50)'

The differential of eq. (2) is

. dr, dj,
d~°=(—dso + ds, ds, .

Using eqs. (1) and (3), this differential is written as
+ Ay N
di,=[(1 + TPT + TN ds,

where the components of the displacement gradient are

rT = U'O - KOWO

— r
My=w, + xgu,

and the prime means ordinary derivative with respect to s..

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

Line element dr, of

length ds, in the initial configuration displaces and rotates to line element dr, of

length ds; in the deformed configuration. Since (ds;)?=dr; ® dr;, we have from eq.

(5) that

(dsg?=[(1 + Tp? + 7 ](ds,).

The stretch ratio A, is defined as ds;/ds,. Thus from eq. (7)

22=(dsyfds,)?=(1 + T + T

Green’s strain ¢, of the reference arc is defined by

(ds:,)2 — (dso)2= 2£O(dso)2

(A7)

(A.8)

(A.9)
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which from eq. (8) can be written as

1
£y = 3(13 —1) (A.10)

or
fo=Tr + =T5 + 5 Th. (A1)

Similar to eqgs. (1) for the initial state, the differential geometry of reference arc in the

deformed state is given by

d,[:) A di t A dﬁ y A
—= 1. T T Ko, = Kl (A.12)
ds, ds, ds,

in which x, is the curvature at s,. From the first of egs. (12), and eqgs. (5) and (8), the

unit tangent vector is

f=t(+rpT+ -y N (A.13)
/10 ~ JO b

We define the rotation of line element dr, in the initial state into dr, in the deformed

state by the angle . Angle f§ is measured positive clockwise from 'j’ to i such that

cos f3 i + sinfl & (A.14)

2>
]

Comparing eqgs. (13) and (14) gives the trigonometric functions of the éng|e finterms

of the components of the displacement gradients as

docosfi=1+ Ty 7 (A.15)
Aosin i=Ty. (A.16)
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Taking the derivative of£ in eq. (14) with respect to s;, using the chain rule and eqgs.

(1) and (8), and comparing this result to the second of eqs. (12), we find that

doko=f' + Ko (A.17)
A A I
n=—sinfi T+ cosfi N (A.18)

where fi is the unit normal to the reference arc in the deformed state at s,. The unit

vector n is rotated 90° clockwise with respect to the tangent vector 1

A parallel arc to the reference arc in the initial state is defined by the position vector

1Z>

r=r, +¢{ (A.19)

in which { is the coordinate along the normal at s,. Coordinate { is constant for a

parallel arc. Using egs. (1) the differential line element tangent to the parallel arc is
dr=(1 — {kp)ds, i’, { = constant . (A.20)

The magnitude of eq. (20) is
ds=(1 — {k,)ds, (A.21)

in which ds is the arc length of the parallel arc. A material point located by position
vector 1 in the initial state is located in the deformed state by position vector . The
displacement of this material point on the paralle! arc is given by the vector differ-
encer — r, and we invoke the Kirchhoff-Love hypothesis to relate this displacement
to the displacement of a material point on the reference arc. The Kirchhoff-Love hy-

pothesis is
- 1=4 + (R - N). (A.22)

Using egs. (19) and (2) this becomes
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r=r + {0 (A.23)

The differential of r" in eq. (23) is

+

dr =dr, + {d

~

(A.24)

13>

which from the relations in egs. (12) may be written as

dr =(1 — Zio)ds, t - (A.25)

Thus, the magnitude of eq. (25) is the differential arc length on the parallel arc in the

deformed state; i.e.,

ds = (1 — {x,)ds, (A.26)
The stretch ratio for the parallel arc is defined as
A=ds [ds (A.27)
which from egs. (21) and (26) becomes
A=2(1 = L)1 = txo). (A.28)
Finally, the Green’s strain for a parallel arc is
e= = (1 - 1) (A.29)
ot in view of eq. (28) and (10) this becomes
P2
£=-%— (1 + 2@(%—%) —1]. (A.30)
62

£ L (IR [N [N |

I

w0 e e

[



I

"

r it wre

Equilibrium

Consider equilibrium of an infinitesimal element of the arch in the deformed state.
The internal actions are a force vector F' in the plane and a moment vector Mi Mo-
ment M" is positive clockwise acting on a positive s; face. Static equilibrium in the

limit as ds, — 0 requires

+

dE
+* =0
d
%o (A.31)
dM. lj\ + ix f' =0.
ds, ~

At the point s,=s., where the spring is attached and the applied downward load P
acts (Fig. A.2), eqgs. (31) are invalid and they are replaced by the transition equilibrium

conditions. These transition equilibrium equations are

[E'(sm)]=Pk + Fd

[M(sm)]=0

(A.32)

in which the [@] means the difference between the quantity Q in the brackets eval-
uated on the right side of s, and the quantity evaluated on the left side of Sm. The

spring force vector acting on the arch is - F.u, where

Fs=K(& — £0) (A.33)
and
L=k + Bolsm)- (A.34)

In egs. (33) and (34) £, and ¢ represent the unstretched and stretched spring lengths,
K is the spring stiffness, and A.(sm) is the displacement vector of the arch at the

spring attachment point (midspan). The magnitude of the vector eq. (34) is
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=, — w,) + u5 (A.35)
A A A A A A 2

in which Au(Sm)=Wm N(Sw) + Unm T(Sm), k®N(sn)= —1, and i®T(s.)=1 for the
midspan location on the symmetric arch. The unit vector u is directed from the base —

of the spring along its line of action toward its connection to the arch in the deformed
state. From eq. (34) &
£ — Wp A Up » -
A — [*} m m A -

u A (A.36)
Virtual Work =
Consider an infinitesimal virtual displacement of the arch from its equilibrium con- -
figuration in the deformed state. The increment in the virtual work of the external -
-

loads (P and F,)is

N A s, -

W= P(— k) + Fs(—8) ] ® 6ro(sm) (A.37)
é

in which dr, denotes a kinematically admissible virtual change in position. Using the
first egs. (32) this expression becomes =
Wey= — [ E (5m) ] ® 8o(sm) - (A.38) -
Equation (38) is equivalent to Z%
Sm s, d(or. . %

Wy = j + f E'e ——(—N,o)—dso. (A.39)
0 s:,‘ ds, =
a

~ since the ends of the arch are immovable and the internal force vector is spatially _

constant on the open intervals 0 < s, < s, and s, < s; < S via eq. (30). Immov-

able end points imply the kinematically admissible variations must satisfy
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3r,(0)=8r,(s’)=0. (A.40)

The virtual displacement is performed following a material point which is identified
by a fixed value of s, in the initial state. Thus, dr, implies a change in position (dis-
placement) holding s, fixed. As a result, the variational operator “6” and ordinary
derivative d( )/ds, commute, but 6" and d( )/ds; do not. Using the chain rule a cou-

ple of times, the spatial derivative of the variation in the integrand of eq. (39) may be

manipulated as follows

_ Sk g .
= t+ 880 (A.41)

In the second step of the above manipulations egs. (8) and the first of egs. (12) were
used to rewrite the spatial derivative, and in the last step the variation of the unit
tangent vector was obtained from eg. (14) recognizing that unit vectors i’(s,) and

El(so) do not vary since s, is fixed. Substitute eq. (41) into (39) to get

sw [ °T . 84, . .
ex=| | |Fe— + Fadf|ds, (A.42)
0 o

m

in which F; and F, are the tangent and normal components of F in the deformed state.
The second of equilibrium egs. (31) can be used to eliminate F, in (42) in terms of the

derivative of the moment. That is,
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Sm s 64 dM’ .
5wext=j + f [Ft ° 5/f:|dso. (A.43)

0 Ao ds;

m

The following identity is valid for simply supported ends (M'=0) or for prescribed end

rotations (fi) (also note M* and § are continuous at the point load)

5
f d_(M'sp) ds,=0.
o ds,
Expanding
T . S o d :
J- — 0ff ds,= —I M ——(6f )ds,
o ds, 0 ds,

. (A.44)
S + 1 .
= ~j Mép T ds, .
0 o
Substituting eq. (44) into (43) and changing the integration variable from s; to s,, we

get

Sm

S
Wy = j + f [Fidd, + MSg'] ds,. (A.45)
sm

0

The right hand side of eq. (45) is the internal virtual work, i.e.

s

éwint = I
0

m

S
+ J [Fi6d, + M8p] ds,. (A.46)
sm

By eq. (45) we have shown, for an arch in equilibrium, that the internal virtual work
is equal to the external virtual work for every kinematically admissible variation of the

displacements with respect to the actual equilibrium displacements. In the finite el-
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ement solution we use the converse of this statement; i.e., we impose W= éW,, for

every kinematically admissible variation to ensure equilibrium of the arch.

From eq. (46) the internal virtual work of the arch in the deformed state per unit arc

length of the initial state is
SW, =F 84, + M. (A.47)

The force and moment components in eq. (47) are defined in terms of the normal

(Cauchy) stress component 1,, in the deformed state by

(F{,M')=I teo(1, — {)dA (A.48)
A
in which A is the cross-sectional area of the arch. The cross-sectional area does not

change from its value in the initial state in the theory. Substituting eq. (48) into (47)

results in

Wy = fArss(«uo _ L5p) dA (A.49)

whic